矩阵的常用性质 矩阵的秩的八大性质?

[更新]
·
·
分类:行业
1992 阅读

矩阵的常用性质

矩阵的秩的八大性质?

矩阵的秩的八大性质?

矩阵的秩是反映矩阵固有特性的一个重要概念。
设A是一组向量,定义A的最大无关组中向量的个数为A的秩。
定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。
定义2. A(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在rltmin(m,n)时,A中所有的r 1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)1 0;不满秩矩阵就是奇异矩阵,det(A)0。
由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。
例1. 计算下面矩阵的秩,而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所有的三阶子式全为零,所以rA2。

两个方阵等价有什么性质?

1,等价矩阵的性质:
2,矩阵A和A等价(反身性);
3,矩阵A和B等价,那么B和A也等价(等价性);
4,矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
5,矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
6,具有行等价关系的矩阵所对应的线性方程组有相同的解
87,对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
扩展资料:
A进行一系列初等变换直到B,则A与B等价,即存在一个逆矩阵PQ,使B=PAQ,则AB秩相同。
AB的相似度是存在,但逆矩阵P使B=P-1ap,所以相似度结论强于等价性。
它们有更多的性质相同的特征值,相同的行列式
等价通常意味着你可以通过初等变换将它转换成另一个矩阵,本质上就是通过与另一个矩阵具有相同的秩。这是一个非常宽泛的条件。它并不适用于很多地方。
A和B很相似,有一个不变矩阵P,使得Pap^-1=B,这是线性代数或高等代数中最重要的关系,高等代数中有一半都在处理这个关系。相似导致等价。