实对称矩阵怎么快速求特征值 为什么实对称矩阵的不同特征值特征向量乘积为零?

[更新]
·
·
分类:行业
4811 阅读

实对称矩阵怎么快速求特征值

为什么实对称矩阵的不同特征值特征向量乘积为零?

为什么实对称矩阵的不同特征值特征向量乘积为零?

特征向量p1与特征向量p2的转置相乘才等于0。
特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Axmx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
求特征向量
设A为n阶矩阵,根据关系式Axλx,可写出(λE-A)x0,继而写出特征多项式|λE-A|0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x0,所求解向量x就是对应的特征值λi的特征向量。

实对称矩阵的特征值一定是互异的?

矩阵的每个特征值都是不同的,而实对称矩阵是一定可以对角化的,n阶实对称矩阵有n个特征值和特征向量,特征值可能有重根。
主要性质:
1.实对称矩阵A的不同特征值对应的特征向量是正交的。
2.实对称矩阵A的特征值都是实数。
3.n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
4.若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。
5.实对称矩阵A一定可正交相似对角化。

实对称可逆矩阵的特征值?

实对称阵属于不同特征值的的特征向量是正交的。设Apmp,Aqnq,其中A是实对称矩阵,shum,n为其不同的特征值。
设A为n阶矩阵,根据关系式Axλx,可写出(λE-A)x0,继而写出特征多项式|λE-A|0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x0,所求解向量x就是对应的特征值λi的特征向量。
扩展资料:
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν0,得到det(A-λB)0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
若B可逆,则原关系式可以写作,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。
如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为A矩阵未必是对称的